465 research outputs found

    Opportunities for Increasing Resilience and Sustainability of Urban Social–Ecological Systems: Insights from the URBES and the Cities and Biodiversity Outlook Projects

    Get PDF
    Urban futures that are more resilient and sustainable require an integrated social–ecological system approach to urban policymaking, planning, management, and governance. In this article, we introduce the Urban Biodiversity and Ecosystem Services (URBES) and the Cities and Biodiversity Outlook (CBO) Projects as new social–ecological contributions to research and practice on emerging urban resilience and ecosystem services. We provide an overview of the projects and present global urbanization trends and their effects on ecosystems and biodiversity, as a context for new knowledge generated in the URBES case-study cities, including Berlin, New York, Rotterdam, Barcelona, and Stockholm. The cities represent contrasting urbanization trends and examples of emerging science–policy linkages for improving urban landscapes for human health and well-being. In addition, we highlight 10 key messages of the global CBO assessment as a knowledge platform for urban leaders to incorporate state-of-the-art science on URBES into decision-making for sustainable and resilient urban development

    A finite volume method for two-moment cosmic-ray hydrodynamics on a moving mesh

    Full text link
    We present a new numerical algorithm to solve the recently derived equations of two-moment cosmic ray hydrodynamics (CRHD). The algorithm is implemented as a module in the moving mesh Arepo code. Therein, the anisotropic transport of cosmic rays (CRs) along magnetic field lines is discretised using a path-conservative finite volume method on the unstructured time-dependent Voronoi mesh of Arepo. The interaction of CRs and gyroresonant Alfv\'en waves is described by short-timescale source terms in the CRHD equations. We employ a custom-made semi-implicit adaptive time stepping source term integrator to accurately integrate this interaction on the small light-crossing time of the anisotropic transport step. Both the transport and the source term integration step are separated from the evolution of the magneto-hydrodynamical equations using an operator split approach. The new algorithm is tested with a variety of test problems, including shock tubes, a perpendicular magnetised discontinuity, the hydrodynamic response to a CR overpressure, CR acceleration of a warm cloud, and a CR blast wave, which demonstrate that the coupling between CR and magneto-hydrodynamics is robust and accurate. We demonstrate the numerical convergence of the presented scheme using new linear and non-linear analytic solutions.Comment: 24 pages, 15 figures, submitted to MNRAS, comments are welcome

    Coupling multi-fluid dynamics equipped with Landau closures to the particle-in-cell method

    Full text link
    The particle-in-cell (PIC) method is successfully used to study magnetized plasmas. However, this requires large computational costs and limits simulations to short physical run-times and often to setups in less than three spatial dimensions. Traditionally, this is circumvented either via hybrid-PIC methods (adopting massless electrons) or via magneto-hydrodynamic-PIC methods (modelling the background plasma as a single charge-neutral magneto-hydrodynamical fluid). Because both methods preclude modelling important plasma-kinetic effects, we introduce a new fluid-PIC code that couples a fully explicit and charge-conservative multi-fluid solver to the PIC code SHARP through a current-coupling scheme and solve the full set of Maxwell's equations. This avoids simplifications typically adopted for Ohm's Law and enables us to fully resolve the electron temporal and spatial scales while retaining the versatility of initializing any number of ion, electron, or neutral species with arbitrary velocity distributions. The fluid solver includes closures emulating Landau damping so that we can account for this important kinetic process in our fluid species. Our fluid-PIC code is second-order accurate in space and time. The code is successfully validated against several test problems, including the stability and accuracy of shocks and the dispersion relation and damping rates of waves in unmagnetized and magnetized plasmas. It also matches growth rates and saturation levels of the gyro-scale and intermediate-scale instabilities driven by drifting charged particles in magnetized thermal background plasmas in comparison to linear theory and PIC simulations. This new fluid-SHARP code is specially designed for studying high-energy cosmic rays interacting with thermal plasmas over macroscopic timescales.Comment: 35 pages, 11 figures, submitted to JPP. Comments are welcom

    How Membrane Curvature Can Sort Proteins

    Get PDF

    Accurate determination of elastic parameters for multi-component membranes

    Get PDF
    Heterogeneities in the cell membrane due to coexisting lipid phases have been conjectured to play a major functional role in cell signaling and membrane trafficking. Thereby the material properties of multiphase systems, such as the line tension and the bending moduli, are crucially involved in the kinetics and the asymptotic behavior of phase separation. In this Letter we present a combined analytical and experimental approach to determine the properties of phase-separated vesicle systems. First we develop an analytical model for the vesicle shape of weakly budded biphasic vesicles. Subsequently experimental data on vesicle shape and membrane fluctuations are taken and compared to the model. The combined approach allows for a reproducible and reliable determination of the physical parameters of complex vesicle systems. The parameters obtained set limits for the size and stability of nanodomains in the plasma membrane of living cells.Comment: (*) authors contributed equally, 6 pages, 3 figures, 1 table; added insets to figure
    • …
    corecore